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and K m is absorbed as a scale factor. With this 
configuration, knowledge of the numerical magnitude 
of K m is no longer required. 

It will be noted that the various forms of the 
expression are symmetrical in respect of K~ and K 2 so 
that, as far as the polarization ratio is concerned, the 
question of whether it is an ante-monochromator or a 
post-monochromator arrangement (Mathieson, 1968) 
is not, in that respect, critical. 

In an operational sense, the relative sequence of the 
monochromator and specimen crystals may lead to 
differences. Where only relative values of intensities are 
sought, there is virtually no distinction. If, however, 
absolute intensities are the aim, there is an advantage in 
the case of the ante-monochromator (case I, Mat- 
hieson, 1968). With this configuration, one can measure 
the intensity of the beam incident on the specimen 
crystal, since that is monochromated, and the 
polarization factor for the specimen crystal alone is 

es = (1 + Kin)[1 + Ks(20 )1 

I+Km 

= 1 + Ks(2~ ). 

In conclusion, it is interesting to note that although 
Kirkpatrick (1927) made an observation, in a similar 
vein, concerning how to deal with the possibility of the 
X-rays from an X-ray tube being polarized, its 
significance for the use of monochromator crystals has 
not apparently been commented on over the last half- 
century. 
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Twin-boundary energies are calculated with the Lennard-Jones 6-12 potential function for the (110) and 
(310)-twin laws of orth0rhombic even n-alkane crystals. In ago'cement with experiment, the calculations show 
that the higher the interaction energy along the twin boundary, the higher the probability of observing the 
corresponding twin. According to the values of the reentrant angles, the adsorption sites near the twin 
boundary may act as permanent growth sites (kinks) where growth takes place spontaneously and leads to a 
crystal elongated in the direction of the twin boundary. 

1. Introduction 

A peculiar aspect of the growth of twinned crystals 
showing dihedral reentrant and salient angles is the 
change of the normal growth kinetics of the faces which 

form these angles. Generally, the occurrence of a 
reentrant angle is followed by an increase of the growth 
kinetics; this phenomenon was observed on different 
crystalline species (Frank, 1949; Stranski, 1949). To 
our knowledge, no kinetic measurements have been 
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carried out and the explanations which have been 
proposed (Frank, 1949; Hartman, 1956) are mainly 
qualitative. Two hypotheses were considered in order to 
explain the effect of the reentrant angle on the growth 
kinetics. According to Frank (1949) it is the lattice of 
screw dislocations generated at the twin boundary 
which starts a permanent advancement of the faces in 
the reentrant angle since the line where they meet 
belongs to the twin boundary. According to Hartman 
(1956) the twin boundary is a permanent step if the 
faces which build it up are F faces, or S faces if their 
zone axis is not parallel to the twin boundary. In both 
cases, the faces of the reentrant ahgle can grow without 
two-dimensional nucleation, since the permanent step 
provides the existence of kinks at which the crystal 
growth takes place. Finally, there are no explanations 
about the behaviour of the twins in the region of the 
salient angle, nor about the dependence of the change in 
the growth kinetics upon the values of the reentrant 
angle. 

The growth kinetics of twinned crystals showing re- 
entrant or salient angles are mainly assumed to be 
diffusion dependent. On the other hand, the adhesion 
energies of the molecules adsorbed on the crystal are 
rarely taken into account. The aim of this paper is to 
show in what manner these adhesion energies can 
influence the growth of some crystal faces as a function 
of the position of the adsorbed molecules, especially in 
the region of the dihedral reentrant angle of a twin, and 
to evaluate the influence of the value of these angles on 
the adhesion energies of molecules placed in the same 
position with respect to the twin boundary. For this 
study, we have chosen the long-chain even n-alkanes, 
C,,Hz,,+ 2, the orthorhombic polymorphs of which often 
present twinned crystals. The (110) twin law was often 
observed for n-Cl00H202 (Dawson, 1952), n-C94Hl90 
(Khoury, 1963), n-C36H74 (Keller, 1961)and n-C34H70 
(Amelinckx, 1956a,b), whereas the (310)twin law was 
observed only for n-C94H~90 (Khoury, 1963) and then 
rarely. 

2. Structural features of the crystals 

The long-chain even n-alkanes may crystallize in the 
orthorhombic polymorph if certain conditions are 
fulfilled: nc > 26 (Smith, 1953), material not quite pure 
(Ubbelhode, 1938) or crystallization from some 
peculiar solvents (Teare, 1959). The crystals are 
generally rhombic flakes with well developed (001) 
faces limited by (110) edges. The value of the acute 
angle Z of the lozenge is theoretically 67.52 ° but 
deviations of +2 ° are often observed. 

The key structure is that of hexatriacontane, n- 
C36H74 (Teare, 1959), and the structures of all the 
members of the orthorhombic series can be derived by 
the method of Nyburg & Potworowski (1973). The 

crystals are built up of paraffinic layers, parallel to 
(001) and inside the layers the paraffinic chains run 
along [001] (Fig. 1). The space group is Pea21 with Z = 
4. The short parameters, independent of the number of 
C atoms in the chain, n~, are a = 7.42 and b = 4.96 A. 
The parameter ¢ is a function of n~" ¢ = (2.54n~ + 
3.693) A; its value is 95.14 A for hexatriacontane. 

3. Calculation method 

In order to calculate the interaction energies between 
the molecules, we have used the Lennard-Jones 6-12 
potential function. Each C atom of the paraffinic chain 

2 is an interaction centre: a multicentre model, with n c 
interactions between two molecules, was employed. The 
potential energy of a molecule surrounded by k 
molecules is thus of the form: 

u ~  = e - 5 7  - 2 (r*)6 
• j rijk r6k  

where i and j are the numbers of C atoms in the 
molecules (1 _< i , j  < no), the sum being extended to all 
the k molecules. As we are dealing with hexatria- 
contane, n c = 36. This potential function was used 
successfully for the calculations of interaction energies 
for complex monoclinic polytypes and polysynthetic 
twins (Aquilano, 1977; Boistelle & Aquilano, 1977) 
and for the calculation of heats of sublimation (Madsen 
& Boistelle, 1976). The force constant e and the critical 
distance r* were determined (Madsen & Boistelle, 
1976) from thermodynamic data and lattice sums: e /k  

Y ~ ? i 
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..... I ' !  

Fig. 1. (001) projection of  the unit cell of  or thorhombic even n- 
alkane crystals. The molecules o f  upper and lower layers are 
respectively in full and dotted lines. C(1) and C(2) are at different 
levels. 
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= 55.26 K and r* = 4-67 A. As in the sequel we are 
dealing with adhesion energies at room temperature, all 
the negative values of U~ should be corrected by a 
constant positive term ~_ 2kT, taking into account 
vibrational energies (Madsen & BoisteUe, 1976). How- 
ever, as this correction is negligible and as we deal 
essentially with the interaction energy between 
molecules inside a layer, for which the potential energy 
Up changes linearly with nc and can thus be ex- 
trapolated to all the members of the orthorhombic 
series, we prefer to give the directly computed 
dimensionless quantities U°/e. Each unit U°/e corres- 
ponds to a value of 0-11 kcal mol-L 

4. Interaction energies in a normal orthorhombic 
crystal 

Fig. 2 is a (001) projection of a monomolecular layer 
limited by (110) ledges. For the molecule adsorbed in 
the kink, K N, U~/e =- -596 ;  the contributions of each 
molecule with respect to K N are indicated. For a 
molecule adsorbed along the step, AN, U~/e = --425, 
whereas for B N the contribution of the monomolecular 
layer is only -52 .  Taking into account all the remaining 
molecules in the row [ 1101, passing through A N and B N, 
U°/e for the complete row [110] = -488 ,  leading to 
53.72 kcal mol-L The corresponding (110} specific 
edge energy is 7<~to> = 4. 185 x 10 -5 erg cm-L 

0 O3 

E 

Fig. 2. Interaction energies between a molecule K N in a kink 
position and its surrounding molecules inside a monomolecular 
layer of thickness d002. Dimensionless quantities U~/e. 

If we consider the contribution of a complete under- 
lying layer, not drawn in Fig. 2, on the molecule K N, we 
find a value of U~/e = -25 .  The half-crystal energy 
corresponds thus to the quantity U°/e = -621 .  
Obviously the end-packing energy (between two adja- 
cent layers) is negligible compared with the side- 
packing energy (inside a layer). As the former is 
constant for all paraffin chain lengths, its relative 
importance decreases when n C increases. 

From Fig. 2 it is also possible to see in what 
crystallographic directions the interaction energies are 
the highest, in order to determine quantitatively the best 
periodic bond chains (p.b.c.) in the crystal (Fig. 3). 
According to the formalism of Hartman & Perdok 
(1955), it is here sufficient, for the p.b.c.'s parallel to 
(001), to consider those inside the monomolecular layer 
of thickness d002. The following values have been found 
for a molecule placed at the end of the different rows: 

Direc- 
tion (1107 I0101 11001 (1307 10011 (3107 (1207 
-U~/e 171.53 171.48 29.82 16.93 4-00 3.29 2-23. 

From these calculations, we may deduce that: 
(i) the two (1 10} p.b.c.'s (the directions [110] and 

[1101 being equivalent) and the [0101 p.b.c., which run 
in the slice d00 z, are built up by the strongest bonds in 
the structure; 

(ii) the [001] p.b.c., which runs along c, is built up 
by very weak end-chain bonds; 

(iii) along the directions [ 100], (130}, (310}, (120} 
we cannot find independent p.b.c.'s. As an example 
(Fig. 3), we may consider the slice d01 o in which a zig- 
zag p.b.c, runs along the [100] direction; this p.b.c, is 

y 

i X / l'I/~/" 

+ / ¢ / +  ÷ 
÷ / p / ÷  ÷ ÷ 
/</+ ÷ +) + 

+ 
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Fig. 3. Periodic bond chains in a monomolecular layer. 
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actually composed of elements of the (110) p.b.c.'s. 
The same consideration applies for the zigzag p.b.c.'s 
we may construct along the directions (130),  (310) 
and (120). 

We conclude that only the {001} faces have a strong 
F character. As for the {110} and {100} faces, which 
contain two p.b.c.'s ((110),  [001] and [010], [001], 
respectively), they have a lower F character, because of 
the high anisotropy between the side-packing and the 
end-packing energies, which means that the {001 } faces 
may grow either by two-dimensional nucleation and/or 
by spiral mechanisms, whereas the {110} and {100} 
faces may grow by rapid filling up of rows (110) 
and [010] respectively, the growth of the rows [001] 
being very slow. The normal growth rates of { 110} and 
{ 100} are in fact very high compared with that of {001} 
(Boistelle & Doussoulin, 1976; Madsen, 1978). 

5. Interaction energies across the (110) twin  boundary 

As the interaction energies between adjacent mono- 
molecular layers are weak and as the {110} faces 
contain the strongest p.b.c.'s of the crystal in the (110) 
directions, we assume in our model a flat (1 I0) inter- 
face between the two individuals of the twin. Since in all 
layers the disposition of the molecules is the same, we 
can furthermore restrict the calculations to a twinned 
crystal reduced to a monomolecular layer of thickness 
d002 • 

Fig. 4 is a (001) projection of such a crystal. The 
molecules in twin position (T) are generated by a clock- 
wise rotation (67.52 ° ) of the molecules of the normal 
crystal (N) around their [001] axis. By translation they 
are then shifted in such a way that the T lattice is 

~ . ~ ,  ~'- "" / \~ .. ' , / 

' . .  ',f . '~ ; /  , , ~ ' ~  

[~,o1 ', ... _..  ~ ,.---. "', " ' , , , . . . ~  

~,~,, : -,.: . ? 7 ~"c )/ *" / '-- ~-" .t ' ,t.. ~.~. . ,/ 
" .... < .....: ,, 

C <  b;  ' . . -*x.  I 

~---.S / T 
N 

Fig. 4. (001) projection of a flat (I 10) twin boundary between the 
crystals N and T inside a monomolecular layer. H atoms: upper 
level (full lines), lower level (dotted lines). 

enantiomorphouswith the N lattice in regard to (110). 
With such an arrangement of the molecules the 
distances between the nearest C atoms across the twin 
boundary are not smaller than 4 .15-4.19 A (equilib- 
rium distances in a normal crystal), and the distances 
between the corresponding H atoms (though not taken 
into account in our calculations) are not smaller than 
2.50 A (twice the van der Waals radius). 

The interaction of O r (Fig. 4) with the mono- 
molecular layer N gives a value U°/e = -380 .  The 
molecule Cr which is at the centre of the unit cell of the 
T lattice is not in the same position as O r with respect 
to the N lattice; for it U°/e = --434. These two values 
repeat periodically along the [110] direction; over the 
period I[[10]1 the mean value of U~le for a 'mean' 
adsorbed molecule is -407 .  The difference between the 
interaction energies of this 'mean' molecule and of the 
normally stacked molecule (A N in Fig. 2) corresponds 
to U°/e = 17.31, i.e. 1.9 kcal mol -~. 

In order to calculate the (110) twin energy for a 
monomolecular layer, the contributions of the N crystal 
on the complete molecular rows 1 and 2 of the T crystal 
(Fig. 4) must be taken into account. For row 1, U~/e= 
-500 ,  whereas for row 2, U~/e = - 4 4 4 ;  the inter- 
action energy of the two rows with the crystal N is thus 
51.9 kcal mo1-1, which corresponds, over the length 
I[[10]1, to 8.09 x 10 -5 erg cm -~. The difference 
between this energy and 8.37 x 10 -5 erg cm -~ (2y<ll0> 
in a normal crystal) gives directly the (110) twin energy 
for a monomolecular layer, which is 1-82 kcal mol -~, 
i.e. 0.28 x 10 -5 erg cm -~. 

Thus it may be concluded that the probability of 
obtaining a (110) twin or a normal crystal is not too 
different. Furthermore, whatever the formation 
mechanism of such a twin, our model of the interface 
agrees with the observed phenomena. Effectively ' . . .  in 
addition to the simple (110) twinned crystals, complex 
crystals were frequently observed . . .  Although such 

.- ,~-., ', / J~ .... , ---, .," 0 I 

" " e ~ " \ ". • 'I. 

Fig. 5. (001) projection of a kinked (110) twin boundary. (Same 
symbols as in Fig. 4.) 
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aggregates often have the appearance of consisting of 
individual twinned crystals randomly clustered 
together, the geometrical relationship betweeen in- 
dividuals radiating primary and secondary branches, 
often indicates that multiple twinning forms, are 
essential features of the development of many of these 
complex crystals' (Khoury, 1963). 

The results obtained with our model of straight twin 
boundary can now be compared with those arising 
from the model of Dawson (1952) and Khoury (1963). 
Here (Fig. 5) the interface between the two individuals 
of the twin is a mean (110) plane, actually made up of 
(100) and (010) microfacets alternating on a period 
I[ i I0]1. Thus the two lattices are centred respectively 
on the positions_O N (origin of the normal lattice) and 
Or ~ = ON + ½[1101 (origin of the lattice in the twin 
position). According to the authors this situation was 
chosen 'since it gives a normal packing arrangement for 
the molecules on both sides of the twin boundary'. The 
contribution of the N crystal to the potential energy of 
the molecules of the T crystal near such a twin 
boundary gives the following values for -U~,/e 

Molecule O~, O2r, C~-, C z, 03;  
-U~/e 706, 239, 242, 31, 48. 

Thus there is an important lack of balance between the 
values of U°/e for two successive [110] rows in the 
crystal: u°/re = - 1 0 0 0  and -279 ,  respectively, for 
rows 1 and 2 in Fig. 5. The total interaction energy for 
these rows is 70.38 kcal mo1-1, i.e. 7-9 x 10 -5 erg 
cm -1, taking into account that the period of the created 
interface corresponds in this case to a length (a + b). 
The resulting twin energy is 0.47 × 10 -5 erg cm -1. 

So a highly kinked twin boundary as proposed in the 
Khoury-Dawson model seems to be less probable than 
the straight one, according to the higher twin energy, 
and to the important lack of balance in the energies 
outlined above. Furthermore, from our p.b.c, analysis, 
there is no reason for (110) to be an S face with its 
micro-facets developing in zone with the [001] direc- 
tion. For these reasons we prefer in the sequel to work 
with the model of the straight (110) twin boundary. 

6. Interaction energies in the dihedral angles near the 
(110) twin boundary 

Let us consider first a molecule R N placed in the 
reentrant angle near the twin boundary (Fig. 6). This 
molecule belongs to the N-crystal lattice, but, at the 
same time, occupies a lattice position of the T crystal. 
Its potential energy, in regard to all the molecules in the 
monomolecular layer of both crystals, corresponds to 
U°/e = - 6 0 1  ( -386  and - 2 1 5  coming respectively 
from the crystals N and T). This means that in this 
particular site of the reentrant angle, the linkage of the 
molecule is at least as good as that of a molecule in a 
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normal kink position (K N in Fig. 2) for which U°/e = 
-596 .  The position of R N is a permanent kink,  from 
which the filling up of the ( 1 I0) rows of both N and T 
crystals starts spontaneously. So, as soon as a molecule 
is adsorbed in the R N position, the successive molecules 
may add in the (110)N ,r  rows forming the reentrant 
angle, following the order indicated in Fig. 6, the 
influence of the reentrant angle decreasing sharply with 
the distance. Furthermore, a new molecule may adsorb 
in the R~ position, before the ( 110)u ' r rows are filled. 
Finally, if there is a very small supersaturation, these 
rows fill up normally and the permanent kink in the 
reentrant angle allows growth without any one or two- 
dimensional nucleation. 

In the salient angle, near the twin boundary, the 
situation of a molecule such as Su, for instance, is 
completely different from that of R N (Fig. 6). The 
contributions to its potential energy are U~,/e = - 2 1 0  
for the N crystal and = - 3 8  for the T crystal. The total 
potential energy of SN corresponds thus to U~,/e = 
-248 ,  a value even lower than that of a molecule 
normally adsorbed on a (110) step such as  A N in Fig. 2 
for which U~/e = -425 .  So, adsorption cannot take 
place on this site if there is not a complete row AB (or 
A'B') of molecules to which S N may join. If one of 
these rows exists the value U~/e of S N is then -420 .  In 
other words, the growth of the faces forming the salient 
angle cannot start at the top of this angle since an 
isolated molecule adsorbed in this position has a very 
high probability of desorption. 

Up to now we have considered that the two (110) 
faces in contact had the same extension along the twin 
boundary (Fig. 6). This may be regarded as the final 
shape of the twin and the more probable one, whatever 
the initial stage of the twin formation may be. 

l [.O]T..1. 

~ ,  : - ~ J  : ' I 

.... ® ) .  ®" 

Fig. 6. Reentrant and salient angles near a flat (110) twin 
boundary. 
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Let us consider a twin boundary where the (110) 
face of the N crystal is more extended than its 
corresponding (110) face in the T crystal (Fig. 7). The 
discussion here is once more limited to the interaction 
energies within the monomolecular layer. 

As may be seen in Fig. 7, there are two reentrant 
angles (R 1 and RE) where growth may take place but 
not in the same conditions. The problem here is to find 
in what way these angles are filled by the growth units, 
taking into account their adhesion energies. 

Among the different adsorption sites within the angle 
R,, the site showing the largest probability of accepting 
a growth unit is R,I either when it corresponds to the 
positions O r or C r of the T lattice shown in Fig. 4; 
actually, for this site the contributions of the individuals 
N and T are the largest. The two cases being 
practically identical, we discuss the case where R ,1 is an 
O r site. Looking for the different possibilities of finding 
a molecule adsorbed in unoccupied sites of the crystal 
we obtain the succession of the molecules R , , . . .R16  
characterized by the following values o f -U~ ' / e :  

molecule R11 Rl2 R13 R14 R15 R16 
--Uff/e 766 638 793 619 611 746. 

If we continue adding molecules, they turn out to 
place themselves first of all along the twin boundary or 
along the free edge of the T crystal; therefore, the angle 
R 1 is progressively filled with [010] r rows as displayed 

4 )-( ~ "-... R, 

4"  i, ~-( "~'T.~. k -( 
2 -,,_< * 

-~' N i ' - 

>.~ , A5 
i 1" 

Fig. 7. First stages of the formation of a (110) twin boundary. 
Deposition sequence of the molecules in the reentrant angles R, 
and R 2. 

in Fig. 7. It is obvious that this filling up may be 
realized because the U~/e values quoted exceed the 
corresponding value for a kink position. In other words 
the adsorption of the growth units is achieved spon- 
taneously and the angle R~ is unstable. 

Applying the same reasoning to the angle R 2 we 
obtain the following succession of the adsorbed 
molecules R2,--.R26 together with their respective 
values of - U~/e: 

molecule R21 R22 R23 R24 Rz5 R26 
- U ~ / e  590 612 632 606 607 629. 

Also in this case, the average value of the adhesion 
energy for the adsorbing molecules is higher than the 
corresponding value for a kink position. Nevertheless in 
this angle the adhesion energies of the molecules are 
weaker than in R~ and its filling up is realized by means 
of [100] r rows. Summarizing, in both angles R I and R 2 
the filling up is spontaneous, even at equilibrium, with a 
higher probability in R~ than in R E. 

In order to determine the growth evolution in these 
angles, it is necessary to know the specific edge energies 
of all edges appearing in the twin at equilibrium. They 
may be obtained from the individual values displayed in 
Fig. 2. For (110), [010], [1001 and (J30)  these specific 
edge energies are respectively: 4.185, 3.98, 4.59 and 
4.36 × 10 -5 erg cm -1. 

Applying Wulff's (1901) theorem, it is then possible 
to calculate by means of these values the equilibrium 
form of a monomolecular layer lying on an infinite 
crystal. The corresponding plot is shown in Fig. 8. 
Obviously, the (110) and [010] edges are well- 
developed whereas the [ 100] and [ i30] edges have very 
short extents. In order to reach the equilibrium form of 
the three-dimensional crystal, it would be sufficient to 
multiply all the values of the specific edge energies by a 
constant (108/d002), obtaining in this way the cor- 
responding specific surface energies in erg cm -z. The 
contributions of the end-packing energies can be 
neglected here; the error on the value of every surface 
energy is about 4% for C36H74, and decreases rapidly 
when the paraffinic chain-length increases. 

. . . . . . . . . . . . . . . . . . . . . . . . .  

[o,o] 
Fig. 8. Edges limiting the equilibrium form of a monomolecular 

layer adsorbed on an infinite (001) face. 
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From these considerations we deduce that the [010] 
ledges, at equilibrium, are stable and well-developed 
within the angle R v On the other hand, within R z, the 
[ 100] ledges cannot exceed a certain length correspond- 
ing to the vanishing of the reentrant angle effect: in this 
case the monomolecular layer within R 2 will be limited 
by (110) ledges truncated by short [ 100] ledges. 

If the bulk is slightly supersaturated the [100] and 
( [30)  ledges vanish very rapidly. The [0101 ledges 
vanish also, but less rapidly than the previous ones, and 
the final shape of the twin will contain only (110) 
ledges and will be elongated along the twin boundary 
(Dawson, 1952; Khoury, 1963). 

crystal (Fig. 10), starting from the molecules A, B, C 
and D, correspond respectively to U ~ / e  = -590 ,  -240 ,  
- 5 8 6  and -221 .  The sum of these quantities, which 
represents the interaction energy between the crystals T 
and N over a period l[ i30]1, corresponds to U ~ / e  = 

1673, i.e., 7.69 × 10 -5 erg cm -l. It follows that the 
(310)-twin energy for a monomolecular layer is 1.034 
× 10 -5 erg cm-l, a value about four times larger than 
the corresponding one for the (ll0)-twin law. These 
results are in good agreement with the experimental 
data: the occurrence frequency of the (310)-twin law is 
very low compared with that of the ( 110)-twin law. 

7. Interaction energies along the (310) twin boundary 
8. Interaction energies in the dihedral angles near the 

(310) twin boundary 

The (310) twin, which also exhibits dihedral reentrant 
and salient angles, was observed by Khoury (1963) on 
r/-C94H190 crystals. Its occurrence frequency is, how- 
ever, very low. According to the results of our p.b.c. 
analysis, (310) is an S face, with its edges running 
along the [001] direction and the interface between the 
two individuals of the twin is made of (110) and (100) 
microfacets alternating along the mean [[30] direction 
(Fig. 9). 

The molecules of the T crystal were generated from 
the molecules of the N crystal in the same way as for 
the (ll0)-twin law, the clockwise rotation here being 
53 °. Taking into account only the molecules inside a 
monomolecular layer, the potential energies of the 
molecules A, B, C and D near the twin boundary 
correspond respectively to U~/e = -526 ,  -214 ,  -521,  
-220 .  The calculated specific energy of the [[30] edge 
is 71~301 = 4.36 x 10 -5 erg cm-L The interaction 
energies with the N crystal of the [ 100] rows of the T 

In the reentrant angle of this twin a molecule R r (Fig. 
10) has a potential energy corresponding to U ~ / e  = 

-435 ,  -425 ,  - 4 2 7  and -422 ,  according as to whether 
the molecule R r is of the type A, B, C or D. We can 
thus accept for R r a mean value o f - 4 2 7 .  The 
contributions of each individual (N, T) on R r are 
dependent on the site occupied by this molecule. For 
instance, if R r is of type A, the contributions of the 
crystals N and T correspond respectively to U ~ / e  = 

-205  and -230 ,  whereas, if R r is of type B these 
contributions correspond to U~,/e  = - 2 9  and -396 .  

In any case the potential energy of R r is practically 
the same as that corresponding to a normally adsorbed 
molecule along a (110) ledge (A s in Fig. 2, for which 
U ~ / e  = -425) .  Conversely, it is also much lower than 
the energy of a molecule in a kink site (K s in Fig. 2, for 
which U~,/e  = -596).  It follows that R r is neither a 
permanent kink nor a preferential growth site in which 
growth can take place spontaneously. The reentrant 
angle has almost no influence on the growth kinetics of 
the (110)N ' r faces by which it is made. 

. / ," t l  t , , . .  , With the same reasoning, it can be shown that a 
• ,' " :  ', '?)-<.. " ~ ~ ' ,  '-~ ...... .~" ,' molecule S u in the salient angle has a potential energy 

';l . . . .  " . . . . .  ~ '  - • - +  corresponding to a mean value of U f f e  = -394 .  This 
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Fig. 9. (001) projection of a (310) twin boundary actually built up Rr ~ 
by (110) and (100) ledges. Fig. 10. Reentrant and salient angles near a (310) twin boundary. 
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molecule can adsorb only if the rows S~$2 o r  S3S 4 
already exist. As for the analogous case in the (1 lO)- 
twin law, growth cannot start from the top of this angle. 
The calculations here are also in good agreement with 
the experimental data of Khoury (1963) who never 
observed special growth directions on the (310)- 
twinned crystals. 

9. Conclusion 

The (110) and (310)-twin energies of orthorhombic 
hexatriacontane crystals, calculated with a Lennard- 
Jones 6-12 potential, can be extrapolated to all the 
long-chain paraffins of the orthorhombic series as a 
function of the number of C atoms in the chains. The 
results given above depend only on the potential 
function and on the twin boundary models. 

In the case of the (110) twin law, the interaction 
energies across the twin boundary have been calculated 
considering interfaces either completely fiat or cor- 
rugated to the highest possible extent. From our p.b.c. 
analysis it emerges that the former is the more 
probable. Near the kinks of the interface, there must be 
a certain displacement of the molecules in order to 
compensate for the lack of balance of the molecular 
interaction energies. The real value of the (110)-twin 
energy is thus probably only a little higher than that 
calculated for a completely flat twin boundary. As for 
the (310)-twin law, its four-times-higher twin energy 
explains its low occurrence frequency. 

If we consider the growth of twinned crystals, the 
salient angles formed by the two individuals are of no 
effect on the growth kinetics since all the adsorbed 
molecules in these angles have lower adhesion energies 
than a molecule adsorbed in a half-crystal position. On 
the other hand, the molecules adsorbing in some re- 
entrant angles, built up by faces of the same (hkl), may 
have near the twin boundary adhesion energies higher 
than a molecule in a normal kink. In this case, the re- 
entrant angles act as permanent kinks and during the 
growth there is an elongation of the crystals along the 

direction of the twin boundaries. If the reentrant angles 
are made up by faces of different (hkl), they disappear 
by formation of new facets. These facets can remain or 
disappear from the growth form according to the 
growth conditions. 

Finally, the results quoted in this study were obtained 
with the aid of calculations valid in the crystal-vapour 
system; the resulting growth morphologies were com- 
pared with that of twinned crystals grown from 
solution. The agreement is good and we may conclude 
that the adsorption of the solvents on the paraffin 
crystals does not change significantly the equilibrium 
form of the crystals, keeping nearly constant the ratios 
between the different surface, edge or twin energies. 
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